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Abstract

The current numerical study is conducted to analyze mixed convection heat transfer in lid-driven cavity with a sinusoidal wavy bot-
tom surface. The cavity vertical walls are insulated while the wavy bottom surface is maintained at a uniform temperature higher than the
top lid. In addition, the transport equations are solved using the finite element formulation based on the Galerkin method of weighted
residuals. The validity of the numerical code used is ascertained by comparing our results with previously published results. The impli-
cations of Richardson number, number of wavy surface undulation and amplitude of the wavy surface on the flow structure and heat
transfer characteristics are investigated in detail while the Prandtl number is considered equal to unity. The trend of the local heat trans-
fer is found to follow a wavy pattern. The results of this investigation illustrate that the average Nusselt number increases with an
increase in both the amplitude of the wavy surface and Reynolds number. Furthermore, optimum heat transfer is achieved when the
wavy surface is designated with two undulations while subjected to low Richardson numbers.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Mixed convection flow and heat transfer in lid-driven
cavities have been receiving a considerable attention in
the literature. This attention stems from its importance in
vast technological, engineering, and natural applications.
Such applications include cooling of electronic devices,
lubrication technologies, drying technologies, food pro-
cessing, float glass production [1], flow and heat transfer
in solar ponds [2], thermal–hydraulics of nuclear reactors
[3], and dynamics of lakes [4]. Flow and heat transfer phe-
nomena caused by buoyancy and shear forces in enclosures
have been studied extensively in the literature. Understand-
ing of these two competing mechanisms is of great signifi-
cance from both fundamental and practical standpoints.
The lid-driven cavity problem has been extensively used
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as a benchmark case for the evaluation of numerical solu-
tion algorithms [5–9]. In fact, the literature shows that two
categories of studies were analyzed [10]. The first category
is concerned with a horizontal sliding lid which encom-
passes the top wall [11–16], bottom sliding wall [17] or an
oscillating lid [18–20]. The second category is associated
with side driven differentially-heated enclosures, where
one wall or both vertical walls move with a constant veloc-
ity [21–23].

Flow and heat transfer from irregular surfaces are often
encountered in many engineering applications to enhance
heat transfer such as micro-electronic devices, flat-plate
solar collectors and flat-plate condensers in refrigerators
[24], and geophysical applications (e.g., flows in the earth’s
crust [25]), underground cable systems, electric machinery,
cooling system of micro-electronic devices, etc. In addition,
roughened surfaces could be used in the cooling of electri-
cal and nuclear components where the wall heat flux is
known. Surfaces are intentionally roughened sometimes
to enhance heat transfer. It is worth noting that most of
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Nomenclature

A dimensionless amplitude of the wavy surface
g gravitational acceleration
Gr Grashof number, Gr = gb(TH � TC)H3/m2

h heat transfer coefficient
H side length of the enclosure
k thermal conductivity
Nu Nusselt number
P dimensionless pressure
Pr Prandtl number, m/a
Re Reynolds number, U0H/m
Ri Richardson number, Gr/Re2

T temperature
S total chord length of the wavy surface
u, v velocity components along x- and y- axes
U, V dimensionless velocity components
U0 sliding top wall velocity
x, y Cartesian coordinates
X, Y dimensionless coordinates

Greek symbols

a thermal diffusivity
b volumetric expansion coefficient
k number of undulation
m fluid kinematic viscosity
h dimensionless temperature, (T � Tcold)/

(Thot � Tcold)
q fluid density
X dimensionless vorticity, xH/U0

W dimensionless stream function, w/HU0

Subscripts

cold cold wall
hot hot wall
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the previous studies on enclosures with a form of wavy
surfaces were concerned with natural convection. For
example, Das and Mahmud [25] conducted a numerical
investigation of natural convection in an enclosure consist-
ing of two isothermal horizontal wavy walls and two adia-
batic vertical straight walls. Also, Adjlout et al. [26] have
studied laminar natural convection in an inclined cavity
with a heated undulated wall, i.e., smooth wave-like pat-
tern. Their results concluded that the hot wall undulation
affects the flow and heat transfer rate in the enclosure in
which the local Nusselt number distribution results in a
decrease of heat transfer rate as compared with the square
enclosure. Moreover, Kumar [27] conducted a study of
flow and thermal field inside a vertical wavy enclosure
filled with a porous media. The author has illustrated that
the surface temperature was very sensitive to the drifts
in the surface undulations, phase of the wavy surface and
the number of considered waves.

Our survey of literature has shown few studies have con-
sidered the implications of complex geometries on the
momentum and energy transport processes under mixed
convection heat transfer regime. The corrugated wall chan-
nel is one of several devices used for enhancing heat trans-
fer characteristics of many industrial transport processes. It
should be pointed out that viscous flow in wavy channels
was first analyzed analytically by Bums and Parkes [28]
while Goldstein and Sparrow [29] used the naphthalene
technique to measure local and average heat transfer coef-
ficients in a corrugated wall channel. Furthermore, O’Brien
and Sparrow [30] performed an experimental study to
determine forced convection heat transfer coefficients and
friction factors for flows in a corrugated duct for Reynolds
number, based on the duct hydraulic diameter, ranged
from 1,500 to 25,000 with a Prandtl number in the range
between 4 and 8. The subsequent enhancement in heat
transfer was reported to be approximately two and a half
times that reported for a classical parallel-plate channel.
In addition, Wang and Chen [31] analyzed forced convec-
tion in a wavy-wall channel and demonstrated the effects
of wavy geometry, Reynolds number and Prandtl number
on the skin friction and Nusselt number. Their results have
illustrated that the amplitudes of skin friction coefficient
and Nusselt number had increased with an increase in the
amplitude to wavelength ratio.

To the best of the authors’ knowledge, no attention has
been paid to the problem of mixed convection of flow and
heat transfer in a lid-driven cavity that is heated from a
wavy bottom surface. The objective of the present study
is to examine the momentum and energy transport pro-
cesses in a lid-driven cavity with wavy bottom surface.
The cavity is sustained under a vertical temperature gradi-
ent by subjecting the bottom wall to a relatively higher tem-
perature than the top lid. The results are shown in terms of
parametric presentations of streamlines and isotherms for
various considered pertinent dimensionless parameters.
These dimensionless groups include the Richardson num-
ber, the wavy surface amplitude, and number of undula-
tions offered by the wavy bottom surface. Finally, the
implications of the above dimensionless parameters are
also depicted on the dimensionless local heat flux and the
global Nusselt number predictions.

2. Problem formulation

The treated problem is a two-dimensional square cavity
with a side length H. The physical system considered in the
present study is displayed in Fig. 1. The vertical walls are
considered adiabatic and impermeable while the horizontal



Fig. 1. Schematic diagram of the cavity and boundary conditions.
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walls are maintained at uniform but different temperatures
such that the bottom wall is assigned to temperature Thot

while the top wall is subjected to temperature Tcold. Under
all circumstances Thot > Tcold condition is maintained. Fur-
thermore, the top wall is assumed to slide from left to right
at a constant speed U0. In addition, the working fluid is
assumed to be Newtonian and incompressible with the flow
is set to operate in the laminar mixed convection regime.
The fluid properties are assumed constant except for the
density variation which is treated according to Boussinesq
approximation while viscous dissipation effects are consid-
ered negligible. The viscous incompressible flow and the
temperature distribution inside the cavity are described
by the Navier–Stokes and the energy equations, respec-
tively. The governing equations were transformed into
dimensionless forms upon incorporating the following
non-dimensional variables:

ðX ; Y Þ ¼ ðx; yÞ
H

; ðU ; V Þ ¼ ðu; vÞ
U 0

; h ¼ T � T cold

T hot � T cold

ð1Þ

where X and Y are the dimensionless coordinates measured
along the horizontal and vertical axes, respectively, u and v

being the dimensional velocity components along x- and y-
axes, and h is the dimensionless temperature. The dimen-
sionless forms of the governing equations under steady
state condition are expressed in the following canonical
forms:

r:V ¼ 0 ð2Þ

ðV :rÞV ¼ 1

Re
r2V þ Gr

Re2
ðhÞ � rP

Re
ð3Þ

V :rh ¼ 1

PrRe
r2h ð4Þ

where V is the velocity vector, P is the dimensionless pres-
sure, Pr is the Prandtl number, Re = U0H/m is the Reynolds
number, with m being the kinematic viscosity. The strength
of the imposed temperature gradient is given by the presen-
tation of the Grashof number Gr defined as

Gr ¼ gbðT hot � T coldÞH 3=m2 ð5Þ

Here, g is the gravitational acceleration and b is the volu-
metric coefficient of expansion. It is worth noting that the
above governing equations are a combination of mixed
elliptic–parabolic system of equations, which need to be
solved simultaneously in case of adopting the primitive var-
iable formulation approach. The shape of the bottom wavy
surface profile is assumed to mimic the following pattern

Y ¼ A½1� cosð2kpX Þ� ð6Þ
where A is the dimensionless amplitude of the wavy surface
and k is the number of undulation. The definition of the
problem at hand is completed by highlighting the applied
boundary conditions, which can be summarized as follows:

U ¼ V ¼ 0; h ¼ 1 at Y ¼ 0; 0 < X < 1

U ¼ 1; V ¼ 0; h ¼ 0 at Y ¼ 1; 0 < X < 1

U ¼ V ¼ 0;
oh
oX
¼ 0 at X ¼ 0; 0 6 Y 6 1

U ¼ V ¼ 0;
oh
oX
¼ 0 at X ¼ 1; 0 6 Y 6 1

ð7Þ

In the current investigation, the vorticity-stream func-
tion formulations are employed such that

U ¼ oW
oY

; V ¼ � oW
oX

; X ¼ oV
oX
� oU

oY
ð8Þ

X ¼ �r2W ð9Þ

where X and W are the dimensionless vorticity and stream
function, respectively, and are defined as

X ¼ xH
U 0

;W ¼ w
HU 0

ð10Þ

where x is the dimensional vorticity and w is the dimen-
sional stream function. The vorticity-stream function
formulation allows the Navier–Stokes equations to be
decoupled into one elliptic equation and one parabolic
equation which can be solved sequentially. Thus, the
dimensionless governing equations can be mathematically
expressed as

U
oX
oX
þ V

oX
oY

� �
¼ 1

Re
o2X

oX 2
þ o2X

oY 2

� �
þ Ri

oh
oX

� �
ð11Þ

U
oh
oX
þ V

oh
oY

� �
¼ 1

RePr
o

2h

oX 2
þ o

2h

oY 2

� �
ð12Þ

where Ri = Gr/Re2 is the Richardson number. The range of
Richardson numbers considered in the ongoing investiga-
tion is 0.01 6 Ri 6 10, while Prandtl and Grashof numbers
are set equal to a fixed value of 0.71 and 104, respectively.
The vorticity values at the solid boundaries are expressed in
terms of the primitive velocity variables such that

X ¼ oV
oX

at Y ¼ 0; 1; 0 < X < 1

X ¼ � oU
oY

at X ¼ 0; 1; 0 6 Y 6 1

ð13Þ

The rate of heat transfer is computed at the bottom wall
and is expressed in terms of the local Nusselt number Nu as

Nu ¼ hH
k
¼ � oh

on
H ð14Þ
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where, h represents the heat transfer coefficient, k thermal
conductivity and n the coordinate direction normal to the
surface. The dimensionless normal temperature gradient
can be written as

oh
on
¼ 1

H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oh
oX

� �2

þ oh
oY

� �2
s

ð15Þ

while the average Nusselt number (NuÞ is obtained by inte-
grating the local Nusselt number along the bottom wavy
surface and is defined by

Nu ¼ 1

S

Z S

0

Nuds ð16Þ

where S is the total chord length of the wavy surface and s

is the coordinate along the wavy surface.

3. Numerical scheme

A finite element formulation based on the Galerkin
method is employed to solve the governing equations sub-
ject to the boundary conditions for the present study. The
application of this technique is well documented by Taylor
Fig. 2. Comparison of the streamlines and temperature contours between the p
and Pr = 1.
and Hood [32] and Gresho et al. [33]. In the current inves-
tigation, the continuum domain is divided into a set of
non-overlapping regions called elements. Nine node quadri-
lateral elements with bi-quadratic interpolation functions
are utilized to discretize the physical domain. Moreover,
interpolation functions in terms of local normalized element
coordinates are implemented to approximate the dependent
variables within each element. Subsequently, substitution of
the approximations into the system of the governing equa-
tions and boundary conditions yields a residual for each of
the conservation equations. These residuals are then
reduced to zero in a weighted sense over each element vol-
ume using Galerkin method.

The highly coupled and non-linear algebraic equations
resulting from the discretization of the governing equations
are solved using an iterative solution scheme called the seg-
regated-solution algorithm. The advantage of using this
method is that the global system matrix is decomposed into
smaller submatrices and then solved in a sequential man-
ner. This technique results in considerably fewer storage
requirements. A pressure projection algorithm is utilized
to obtain a solution for the velocity field at every iteration
step. The pressure projection version of the segregated
resent work and that of Moallemi and Jang [34] using Re = 500, Ri = 0.4
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algorithm is used to solve the non-linear system. In addi-
tion, the conjugate residual scheme is used to solve the
symmetric pressure-type equation systems, while the conju-
gate gradient squared method is used for the non-symmet-
ric advection-diffusion-type equations.

A variable grid-size system is generated in the present
investigation to capture the rapid changes in the dependent
variables. Extensive numerical experimentation is per-
formed to attain grid-independent results. Steady state
solution was declared when the relative change in the
stream function, vorticity, and temperature fields between
two consecutive iterations is satisfied by the following
criterion:X

ucþ1
i;j � uc

i;j

�� �� X ucþ1
i;j

�� ��.
6 10�6 ð17Þ

where uc
i;j stands for stream function, vorticity, and tem-

perature at iteration c.

4. Model validation

The model validation is an essential part of a numerical
investigation. Hence, the outcome of the present numerical
code was benchmarked against the numerical results of
Moallemi and Jang [34], which were reported for laminar
mixed convection heat transfer in a lid-driven cavity heated
from below. The comparison was conducted while employ-
ing the following dimensionless parameters: Re = 500,
Ri = 0.4 and Pr = 1. Excellent agreement was achieved,
as illustrated in Fig. 2, between our results and the numer-
ical results of Moallemi and Jang [34] for both the stream-
lines and temperature contours inside the cavity. Further
validation was performed by comparing the local Nusselt
number distribution along the cavity lid between the pres-
ent work and that of Moallemi and Jang [34]. Again, the
comparison strikes excellent agreement between both
results as displayed in Fig. 3. These validations boost the
confidence in our numerical code to carry on with the
above stated objectives of the current investigation.
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Fig. 3. Comparison of the local Nusselt number variation along the cavity
lid between the present results and that of Moallemi and Jang [34] using
Re = 500, Ri = 0.4 and Pr = 1.
5. Results and discussion

The characteristics of the flow and temperature fields in
the lid-driven cavity are examined by exploring the effects
of the Richardson number Ri, number of undulations k,
and amplitude of the wavy bottom surface A. Such field
variables are examined by outlaying the steady state ver-
sion of the streamline and temperature distributions as well
as the local heat flux and the average Nusselt number. In
the current numerical investigation, the following paramet-
ric domains of the dimensionless groups are considered:
0.01 6 Ri 6 10, 0 6 k 6 3 and 0 6 A 6 0.075. In addition,
the maximum and minimum recirculation intensity levels
and dimensionless temperature bounds were documented
for the presented streamline results to reflect on the flow
intensity levels.

First, the impact of varying the Richardson number Ri

on the streamlines and temperature contours for various
numbers of undulations is gauged through the results
illustrated in Figs. 4–6 for A = 0.05. The Richardson
number provides a measure for the importance of the
thermal natural convection forces relative to the mechan-
ically induced lid-driven forced convection effect. Again,
the considered domain of Ri was varied between 0.01
and 10, which very much spans over a wide range of
possible operating conditions. For Ri = 0.01, the overall
features of the streamlines and temperature contours are
similar to those of conventional mechanically-driven cav-
ity flow which are characterized by a primary recirculating
clockwise vortex that occupies the bulk of the cavity. In
addition, minor vortices tend to form near the bottom
corners, which can be captured by increasing the number
of contour lines. Meanwhile, thinner boundary layers are
depicted to form near the bottom wall. This is attributed
to the increase in the contribution of convection heat
transfer mechanism, which causes steep temperature gra-
dients in the vertical direction near the bottom wall as
shown in Fig. 4. In the bulk of the cavity, however, the
temperature differences are very small and consequently
the temperature gradients are weak due to the significant
effect of the mechanically-induced sliding lid. When the
Richardson number increases to unity, the buoyancy
effect balances the effect of the sliding top wall and, hence,
the total heat transfer in the cavity is controlled by the
combined mechanisms of forced and natural convection
as shown in Fig. 5. Apparently, the flow activities have
weakened as interpreted from the registered minimum
and maximum intensity levels. Consequently, the conduc-
tion contribution to the overall heat transfer enlarges as
illustrated by the expansion of the thermal boundary lay-
ers formation above the bottom wall. Upon further
increasing the Ri value to 10, the buoyancy effect out-
weighs the effect of the sliding wall as shown in Fig. 6.
Less energy is noticed to be carried away from the sliding
top wall into the cavity and, subsequently, the conduction
heat transfer regime has become the dominant mode of
energy transport in the cavity.



Fig. 4. Streamline and temperature contours for various undulations
(Gr = 104, Ri = 0.01).

Fig. 5. Streamline and temperature contours for various undulations
(Gr = 104, Ri = 1).
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Next, the influence of the number of undulations on the
local variation of heat along the heated wavy surface is also
demonstrated in Figs. 6–8. It appears from the figures that
varying the number of undulations k between 0 and 3 does
not disturb the global flow and isotherm patterns except in
the vicinity of the bottom wall, where the contour lines
mimic the wall’s profile. In addition, the recorded upper
and lower bounds for flow intensities do not seem to vary
significantly either.

Further insight into the effect of the Richardson number
and the number of undulations is presented by highlighting
their respective effects on the dimensionless local heat flux
predictions as shown Figs. 7–9 for A = 0.05. It appears that
the employed number of undulation impacts the distribu-
tion of the local heat flux along arc length of the bottom
surface by producing a corresponding number of peaks
and valleys which correspond to the imposed n values. It
is worth pointing out that the highest local heat flux is
achieved with Ri = 0.01 which is likely attributed to the
heat transfer augmentation offered by the mechanically-
sliding lid. Highly localized heat transfer or ‘hot spots’
might be an issue of concern when low employing low Ri

values. Meanwhile, varying Ri value is found to alter the
highest attained peak by a given undulation number. The
effect of the numbers of undulations n on the average Nus-
selt number for various Richardson numbers Ri is graphi-
cally established Fig. 10. The results show that the average
Nusselt number increases with the decrease in the consid-
ered Ri value. Moreover, the average Nusselt number is
almost uniform for higher Ri values in the considered n
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Fig. 6. Streamline and temperature contours for various undulations
(Gr = 104, Ri = 10).
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range. Such an increase is noticed to be remarkable when
incorporating Ri = 0.01 owing to the increase in the con-
vection heat transfer contribution to the overall energy
transport process. An interesting phenomenon is observed
at Ri = 0.01 for which the average Nusselt number peaks at
k = 2 which reflects the high local heat flux distribution as
reported in Fig. 7.
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The current investigation is wrapped by evaluating the
implications of the wavy surface amplitude A on the
momentum and energy transport processes in the lid-
driven cavity. This is first examined by plotting the stream-
lines and temperature contours as illustrated in Fig. 11.
The results, which are depicted for Ri = 1 and k = 3, indi-
cate that the flow activities and thermal currents are both a
weak function of surface amplitude in the considered rage
of A = 0–0.075 This effect is more profound in Fig. 12
which shows the effect of the amplitude on the local varia-
tion of heat flux along the wavy surface. The results in
Fig. 12 exhibits higher local heat flux variation with an
increase in the amplitude of the wavy surface owing to
higher velocity gradients near the top lid which subse-
Fig. 11. Streamline and temperature contours for various amplitudes
(Gr = 104, Ri = 1).

Fig. 12. Local heat flux variation for various amplitudes (k = 3, Gr = 10 ,
Pr = 1, Ri = 1).
quently increases the heat transfer rate. Finally, the effect
of varying the amplitude of the wavy surface on the aver-
age Nusselt number predicted at the bottom surface is
shown in Fig. 13 for various values of Richardson num-
bers. The results, as shown in the figure, illustrate that
the average Nusselt number is in general higher than that
predicted for a flat surface. Moreover, the average Nusselt
number is found to increase with the elevation in the mag-
nitude of the amplitude value of the wavy surface. The
average Nusselt number obtained from the respective
incorporated amplitude values manifest high predications
at the lower end of the Ri range considered. However,
the average Nusselt number predictions approach an
asymptotic value with the increase in Ri value. This is most
likely attributed to the overwhelming effect of the natural
convection regime which suppresses the effect of the surface
waviness and the mechanical effect of the top sliding
surface.

The average Nusselt number calculated along the sinu-
soidal bottom surface is correlated in terms of various per-
tinent parameters including Richardson number (0.01 6
Ri 6 10), dimensionless amplitude of the wavy surface
(0 6 A 6 0.075), and the number of undulation (0 6
n 6 3). This correlation can be written as follow
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Nu ¼ 2:3383þ ð6:99þ kÞ0:2417ðAþ 0:4848ÞRi�0:3890 ð18Þ
where the confidence coefficient for the above equation is
R2 = 99.3%. A graphical representation of the above corre-
lation is illustrated in Fig. 14. This figure demonstrates an
excellent agreement between the numerical results and
those obtained by the correlation.

6. Conclusions

Mixed convection heat transfer in a lid-driven cavity
heated from below is studied numerically for various perti-
nent dimensionless groups. The bottom surface is consid-
ered to follow a wavy pattern. Furthermore, the vertical
walls were subjected to insulated boundary conditions.
The governing equations are solved using the Galerkin
finite element method. Effects of dimensionless groups rep-
resenting the wavy geometry, Richardson number, and
number of undulation were highlighted to study their
impacts on flow structure and heat transfer characteristics.
The increase in the Richardson number hinders flow and
thermal current activities owing to the increase in the
imposed vertical temperature gradient. Moreover, the
results of this investigation have illustrated that the number
of undulation at the heated bottom wall significantly affects
heat transfer characteristics inside the cavity. The results
have also demonstrated that the average Nusselt number
was found optimum when employing two undulations at
low Richardson number, which can be attained by increas-
ing the sliding lid speed. Finally, the local and average
Nusselt number predictions are found to increase with
elevation in the amplitude of the wavy surface while main-
taining a relatively low Richardson number. Thus, the cor-
rugated lid-driven cavity can be considered as an effective
heat transfer mechanism at larger wavy surface amplitudes
and low Richardson numbers.
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